#materialscience

Research, development and commercial applications of advanced flexible materials.

Recent Articles

Vision for the Future: Smart Contact Lenses

 

 

Researchers are working to develop and fabricate soft, smart contact lenses by combining recent advances in wearable electronics with wireless communications. Their vision is to create a smart contact lens which is capable of monitoring the physiological information of the eye and tear fluid, to provide real-time, non-invasive medical diagnostics.

Read More
 0

5 Types of Flexible Composites Transforming Your Healthcare

In Brief

Simply put, a composite is a material made from two or more materials that have different properties. When combined together, the chemical and physical properties of the different materials work together to form a unique material or composite. Combining materials is nothing new. The Egyptians were doing it millenniums ago, combining mud and straw to make buildings, boats, and pottery. The 20th century saw great leaps in composites, largely spurred on by the second world war. In recent decades, however, composite materials have aided the production of a new gold standard in healthcare.  

 

Read More
 0

Recent Advances in Bioink Design for 3D Bioprinting

In Brief

Despite recent advances in tissue engineering, there remains a lack of tissues and organs for transplantation and a shortage of tissue models for drug discovery and testing. Some of the hindrances involve conventional techniques, such as porogen-leaching, injection molding, and electrospinning due to the limited control over scaffold architecture, pore shape, composition, size, and distribution.

 

3D bioprinting overcomes these barriers by enabling fabrication of scaffolds, devices, and tissue models with a high complexity. Using computer-aided design, 3D printing facilitates construction of tissues from commonly used medical imaging like x-rays, MRI's, and CT scans.

Read More
 0